A New Tool for Nonstationary and Nonlinear Signals: The Hilbert-Huang Transform in Biomedical Applications
نویسنده
چکیده
Time-frequency techniques constitutes a major improvement in signal analysis, namely at the field of biomedical signals in which the interdisciplinary nature of the proposed questions implies the development of new strategies to answer to specific problems. Timefrequency analysis using Wavelets, Wigner-Ville transform and more recently the HilbertHuang Transform (HHT) constitutes the core of these tools with applications in biomedical signals in last years. The non-linearity and non-stationarity nature of these signals puts HHT as a powerful tool to process signals with those properties, avoiding artefacts related to the use of linear and stationary assumptions. Classical spectral analysis using Fourier Transform still the most commonly used method when one wants to measure the global power-frequency distribution (power spectrum) of a given signal. In all areas of knowledge, Fourier-based analysis of time-series data faces constraining limitations. In biomedical signals, the critical constraining factors are the shortness of total data span, the non-stationarity of the data and the nonlinearity of the underlying physiological process. Methods using Short Time Fourier Transform (STFT) are able to extract the spectral information by defining short time windows and locally computing the Fourier transform, thereby coping with non-stationary phenomena. The frequency resolution is inversely proportional to the window length, and changes in time resolution (window length) compromise the frequency resolution. Even with optimized joint time-frequency localization, the trade-off between time and frequency resolution is unavoidable. In spite of these limitations, classical Fourier spectral analysis is still widely used to process biomedical data, for lack of alternatives. The uncritical use of Fourier spectral analysis and the careless adoption of the stationary and linear assumptions may give misleading results. Wavelet theory developed in the 90’s of last century was a significant contribution to tackle the problem of non-stationarity in time-series analysis. In common with Fourier-based analysis such as STFT, wavelet analysis yields a time-frequency representation, the main difference being that the decomposition is not based on sinusoidal functions, but rather
منابع مشابه
A Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملHilbert-Huang Transform and Its Applications in Engineering and Biomedical Signal Analysis
Hilbert Huang transform (HHT) is a relatively new method. It seems to be very promising for the different applications in signal processing because it could calculate instantaneous frequency and amplitude which is also important for the biomedical signals. HHT consisting of empirical mode decomposition and Hilbert spectral analysis, is a newly developed adaptive data analysis method, which has ...
متن کاملSliding Window Empirical Mode Decomposition -its performance and quality
Correspondence: [email protected] Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland Abstract Background: In analysis of nonstationary nonlinear signals the classical notion of frequency is meaningless. Instead one may use Instantaneous Frequency (IF) that can be interpreted as the frequency of a sine wave which locally fits the signal. IF is meaningful for mon...
متن کاملNonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملIllumination Invariant Face Recognition based on the New Phase Local Features
Hilbert-Huang transform (HHT) is a novel signal processing method which can efficiently handle nonstationary and nonlinear signals. It contains two key parts: Empirical Mode Decomposition (EMD) and Hilbert transform. EMD decomposes signals into a complete series of Intrinsic Mode Functions (IMFs), which capture the intrinsic frequency components of original signals. Hilbert transform is adopted...
متن کامل